
Journal of Data Science Vol. 14(2016), 213–244

Predicting Students’ Problem Solving Performance using
Support Vector Machine

Young-Jin Lee
University of Kansas

Abstract: This study investigates whether Support Vector Machine (SVM)
can be used to predict the problem solving performance of students in the
computer-based learning environment. The SVM models using RBF, linear,
polynomial and sigmoid kernels were developed to estimate the probability
for middle school students to get mathematics problems correct at their first
attempt without using hints available in the computer-based learning envi-
ronment based on their problem solving performance observed in the past.
The SVM models showed better predictions than the standard Bayesian
Knowledge Tracing (BKT) model, one of the most widely used prediction
models in educational data mining research, in terms of Area Under the
receiver operating characteristic Curve (AUC). Four SVM models got AUC
values from 0.73 to 0.77, which is approximately 29% improvement, com-
pared to the standard BKT model whose AUC was 0.58.

Key words: Bayesian Knowledge Tracing (BKT), Educational Data Mining,
Log File Analysis, Support Vector Machine (SVM).

1. Introduction

As Koedinger and Aleven (2007) pointed out, it is critical to balance giving
and withholding instructional supports in the computer-based learning environ-
ment in order to maximize student learning outcomes. Students may not exert
enough cognitive effort and fail to acquire a schema from learning tasks if they
receive instructional supports prematurely (Kapur, 2008; Schmidt and Bjork,
1992). On the other hand, academically weaker students are likely to fail to learn
from learning tasks unless they are provided with appropriate instructional sup-
ports and guidance in time. In most of computer-based learning environments,
simple heuristics (e.g., giving hints or feedback after students fail to resolve a
learning task a certain number of times) or the learner’s discretion is used to
determine when instructional supports need to be provided. However, simple
heuristics would not be able to find the right moment to provide instructional

144 Predictive SVM Model of Problem Solving Performance

assistance that can maximize student learning outcomes. Similarly, providing
instructional supports on the learner’s demand may not lead to improved stu-
dent learning because previous studies found that especially novice learners do
not possess enough metacognitive abilities and prior knowledge required to de-
termine the right moment to ask for help (Clark and Mayer, 2003; Lawless and
Brown, 1997).

In order to balance giving and withholding instructional supports in the
computer-based learning environment, it is essential to quantify the ability or
the level of understanding of students who are trying to learn from given learning
tasks. For example, if we can estimate how likely students are to correctly solve a
problem based on their performance on other (preferably related) problems they
solved in the past, we should be able to make a better judgment on whether or
not they need instructional supports.

One of the most popular approaches to quantifying the ability of students
is Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1995). BKT is
based on Hidden Markov Model (HMM) where the ability of students is assumed
to be a binary variable (e.g., do vs. do not understand the Pythagorean theorem)
that cannot be observed directly. BKT repeatedly estimates and updates this
hidden variable as it encounters a series of successful or unsuccessful observable
learning events (e.g., solve or fail to solve a problem requiring an understanding
of the Pythagorean theorem). BKT has been used in many previous studies to
model the ability of students in computer programming (Corbett and Anderson,
1995), mathematics (Pardos and Heffernan, 2011; Pardos, Gowda, Baker and
Heffernan, 2012), reading (Beck and Chang, 2007) and physics (Pardos, Bergner,
Seaton and Pritchard, 2013).

Although BKT has been a popular choice among researchers in educational
data mining, there are other statistical learning algorithms, such as Support Vec-
tor Machine (SVM), that can estimate the ability of students. SVM frequently
showed better performance than other data mining algorithms in many research
projects ranging from text classification (Joachims, 2002) to bioinformatics (Ding
and Dubchak, 2001; Furey, Duffy, Cristianini, Bednarski, Schummer and Has-
sler, 2000; Hua and Sun, 2001), handwritten digit identification (DeCoste and
Schölkopf, 2002) and face recognition (Maghaddam and Yang, 2002). Despite
its success, SVM has been rarely utilized in educational data mining research.
This study seeks to address this gap in educational data mining by developing
SVM-based predictive models of problem solving performance of students, and
comparing their predictive power to BKT.

The rest of this paper is organized as follows. Section 2 introduces the SVM
classification method, the data set, and how the data set was pre-processed. Sec-
tion 3 presents how various SVM models were fit to the pre-processed data, and

Young-Jin Lee 145

compares the predictive power of the SVM models to the BKT model. Section 4
presents discussions and future directions. Finally, Appendix provides the Python
source code snippet showing how an SVM model can be built.

2. Method
2.1. Support Vector Machine (SVM)

SVM is a classification algorithm that tries to reduce the probability of mis-
classification by maximizing the distance between two class boundaries (positive
vs. negative) in data. SVM tries to find a hyperplane, 〈~w, ~x〉 = b, that can
separate positive data points from negative ones as much as possible in a high
dimensional feature space. In the case of soft-margin classification, which can
deal with linearly non-separable or noisy data, the maxim margin hyperplane
can be obtained by solving the following optimization problem (Cristianini and
Shawe-Taylor, 2000):

max
~α

 l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjk(~xi, ~xj)

 (1)

subject to the constrains
l∑

i=1

αiyi = 0

0 ≤ αi ≤ C

with i = 1, . . . , l (number of data points).

Here, αi is a Lagrange multiplier of the Lagrangian dual of the soft-margin
classifier optimization problem, and k(~xi, ~xj) is a kernel function that allows us to
efficiently compute the dot product in a high dimensional feature space without
actually projecting data points ~xi into the feature space. Table 1 provides a list of
kernel functions used in this study, and their free parameter. The free parameter
of these kernel functions and the cost constraint C can be determined by cross
validation as explained below. The cost constant C regulates the amount of clas-
sification error the algorithm would accept while trying to solve the optimization
problem. A larger (smaller) C value will result in a narrower (wider) margin
classifier because the algorithm has to pay a high (small) price as it commits a
classification error. Note that the cost constant allows us to use a linear kernel
for the data that is not linearly separable because nonlinear data points can be
considered noise.

Once αi values are determined, the normal vector ~w and the offset term b
of the maximum margin hyperplane separating positive instances from negative

146 Predictive SVM Model of Problem Solving Performance

Table 1: SVM kernel functions used in this study and their free parameter

Kernel name Kernel function Free parameter

RBF exp(−γ|~xi − ~xj |2) γ > 0
Linear 〈~xi, ~xj〉 None
Polynomial 〈~xi, ~xj〉d d ≥ 2
Sigmoid tanh(γ〈~xi, ~xj〉) γ > 0

ones in the data can be computed as follows:

~w =

l∑
i=1

αiyi~xi

b =
l∑

i=1

αiyi〈~xi, ~xsv+〉 − 1 (2)

where, ~xsv+ is any data point that lies on the maximum margin hyperplane
supporting the positive class boundary. Then, the class membership of a new
data point ~x can be determined by a decision function f̂ = sign(〈~w, ~x〉 − b). A
new data point ~x will be predicted as a positive instance only when the decision
function returns a positive value.

In order to estimate the probability of being in a positive class, rather than
the class membership, the posterior probability can be approximated by a sigmoid
function as suggested by Platt (2000):

Pr(y = 1|~x) ≈ PA,B(~x) =
1

1 + exp(A(〈~w, ~xi〉 − b) +B)
(3)

A and B in Equation 3 can be obtained by solving the following optimization
problem:

min
z=(A,B)

F (z) = −
l∑

i=1

(
tilog(pi) + (1− ti)log(1− pi)

)
(4)

for pi = PA,B(~xi)

ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1

N+ = Number of positive yi in the training set

N− = Number of negative yi in the training set

i = 1, . . . , l

Young-Jin Lee 147

Building an SVM model typically requires the following steps:

1. Preprocess data to create predictor variables conforming to the format of
an SVM library (see Section 2.3). This study used an open source python
data mining library called scikit-learn (Pedregosa et al., 2011) in building
soft-margin SVM models that can predict the class membership and the
posterior probability of unseen problem solving data.

2. Normalize all non-categorical predictor variables in order to keep them be-
tween 0 and 1 (see Section 2.3).

3. Choose an appropriate kernel to be used (see Table 1).

4. Separate the data into training and test sets (see Section 2.3).

5. Find the best parameters for the selected SVM kernel by conducting cross
validation on the training set (see Section 3.1)

6. Build the final SVM model using the best parameters identified in the
previous step and the entire training set (see Section 3.2).

7. Evaluate the predictive power of the developed SVM model against the test
set (see Section 3.2)

2.2. Data set

The data set analyzed in this study was obtained from the Pittsburgh Sci-
ence of Learning Center (PSLC) (http://www.learnlab.org). Their DataShop
Web service (http://pslcdatashop.org) provides log files of computer-based
learning environments capturing the learning processes of students trying to
solve various subject matters, from foreign language to mathematics and physics
(Koedinger, Baker, Cunningham, Skogsholm, Leber and Stamper, 2010). This
study used ‘Assistment Math 2004-2005 ’ data set that captured how 912 middle
school students used a Web-based algebra learning environment for over 3,400 stu-
dent hours. The original data set obtained from PSLC includes 580,786 database
transactions where each transaction record contains information about students,
and their problem solving activities such as problem/step name, problem/step
solving time, and whether or not they were able to solve each problem solving
step successfully (see Table 2).

One thing to note is that each transaction is associated with a particular
Knowledge Component (KC), which is defined as “an acquired unit of cognitive
function or structure that can be inferred from performance on a set of related
tasks1.” KC allows for categorizing problem solving steps so that problem solving

1http://pact.cs.cmu.edu/pubs/PSLC-Theory-Framework-Tech-Rep.pdf

148 Predictive SVM Model of Problem Solving Performance

Table 2: Problem solving information available in the PSLC data set

Column in PSLC data set Description

Anonymized student ID Anonymized student ID generated by
DataShop

Problem name Name of the problem associated with the
transaction

Step name Name of the problem solving step associated
with the transaction

Problem time Time at which the student started solving
the problem

Step time Time at which the student started working
on a particular problem solving step

Number of problem views Number of times the student tried to solve
the same problem

Number of attempts at step Number of times the student submitted an
answer to the same problem solving step

KC Knowledge Component associated with the
transaction

Outcome Result of the problem solving attempt
(CORRECT, INCORRECT or HINT)

steps in the same category can be considered examining one particular mathe-
matics concept (e.g., Pythagorean theorem).

2.3. Data pre-processing

Considering the fact that building an SVM model is computationally expen-
sive (see Table 3), compared to BKT and other standard statistical approaches
such as Generalized Linear Model (GLM), the original data set obtained from
PLSC was too big to be processed on a standard desktop computer. In order
to make the computation tractable on a standard desktop computer, this study
used randomly selected 10% of the transaction records.

Since the goal of this study was to build SVM models that can predict stu-
dents’ problem solving performance based on their problem solving history, the
selected transaction records were pre-processed as follows. First, for each selected
transaction record, its anonymized student ID, KC and step time were identified.
This information is then used to compile all transaction records with the same
anonymized student ID and KC, and earlier step time and problem time. From

Young-Jin Lee 149

Table 3: Best parameters and execution time of SVM models

Kernel Parameter ranges Best Parameters Execution time

RBF C = 10−3 − 105 C = 10 44h 27m 54s
γ = 10−3 − 102 γ = 10−2

Linear C = 10−3 − 102 C = 10−1 23h 45m 14s

Polynomial C = 10−3 − 1011 C = 107 36h 13m 22s
d = 2, 3, 4 d = 3

Sigmoid C = 10−3 − 105 C = 102 28h 38m 04s
γ = 10−3 − 102 γ = 10−3

these records of past problem solving performance on the same KC, number of
unique problems and steps the student solved, fraction of correct steps/problems,
fraction of incorrect steps/problems, fraction of steps/problems with a hint re-
quest, and streaks of correct answers were computed. These predictors were then
normalized in order to keep them in the same [0, 1] range. Otherwise, predictors
with a broader range will have an unfair influence on the objective function an
SVM algorithm tries to optimize (Equation 1). In addition, dummy variables
were created to incorporate categorical variables, such as anonymized student
ID, problem name, step name, and KC, into SVM prediction models. Finally,
a new outcome variable (CORRECT or WRONG) was created by combining
INCORRECT and HINT cases because the focus of this study was to predict
whether students will be able to solve a problem without using hints available in
the computer-based learning environment.

In order to estimate the predictive power of SVM models without bias, the
preprocessed PLSC data set was divided into training and test sets. When creat-
ing a test set, which consists of 20% of the pre-processed data, stratified random
sampling was used to ensure that the ratio of positive to negative instances in
the training and the test sets are similar.

3. Results
3.1. Tuning SVM models

In this study, five-fold cross validation was used to find the best values for
tuning parameters (cost constant in Equation 1 and free parameter of kernel
functions in Table 1) of SVM models that can maximize the predictive power on
unseen future data. First, the values of tuning parameters were selected from
a grid spanning an appropriate parameter space. For example, an SVM model

150 Predictive SVM Model of Problem Solving Performance

using an RBF kernel chooses two values for C and γ from a two dimensional
parameter space. Then, the training set was randomly divided into five sets of
roughly equal size with similar proportions of positive and negative instances,
and an SVM model with the selected tuning parameter values was fit using all
samples in the training set except for one subset. The samples in the held-out
set, which played a role of future data because they were not used in the model
building process, were then used to estimate the performance of the SVM model
with these particular parameter values. These processes were repeated five times
with a different subset of the training set being used as a held-out set. The
average of the five estimates of predictive power was used to represent how well
an SVM model with specific tuning parameters would work when it is given new
problem solving data in the future.

In this study, the predictive power of an SVM model is measured by Area Un-
der the Curve (AUC) obtained from a Receiver Operating Characteristic (ROC)
curve analysis. When applied to a binary classification problem, an ROC curve
is a plot of false positive rate (1 − specificity) vs. true positive rate (sensitiv-
ity) derived from the posterior probability of each data point estimated by the
learning algorithm (Equation 3). Since a good classification model will report a
small false positive rate and a large true positive rate, the area under the ROC
curve of a good classification model will has a large AUC value. AUC can vary
from 0.5 (predictive power not better than simple guessing) to 1.0 (perfect pre-
dictive power), and it is known to be equal to the probability that a learning
algorithm ranks a randomly chosen positive instance higher than a randomly
chosen negative one (Fawcett, 2006).

Figure 1 shows the AUC values of an SVM model using an RBF kernel which
has two tuning parameters, C and γ. The γ parameter of an RBF kernel deter-
mines how far the influence of data points in the training set selected as support
vectors can reach. A large γ value means that the influence of support vectors
will be limited to the data points close to them. As a result, when γ is large
(γ = 1, 10, 102 in Figure 1), AUC does not change much. When γ is small, on the
other hand, AUC shows significant changes and the largest AUC value (0.755)
was obtained at C = 10, γ = 10−2.

Table 3 summarizes the best tuning parameters of each SVM model and the
execution time that was needed to find them. Since each SVM model converged
differently in the parameter space, different parameter ranges had to be explored.
In the case of a polynomial kernel SVM model, for example, a much wider range
of C values had to be examined because its AUC value changed rather slowly,
compared to other kernels such as a linear kernel whose AUC value was peaked
at C = 10−1 and leveled off quickly. On the standard desktop computer with an
Intel Core i5 processor (3.40 GHz) and 8 GB of memory, the parameter tuning

Young-Jin Lee 151

10-3 10-2 10-1 100 101 102 103 104 105

C

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
A

U
C

SVM-RBF kernel

γ=10−3

γ=10−2

γ=10−1

γ=100

γ=101

γ=102

Figure 1: AUC values of an RBF kernel SVM model computed over different C
and γ values

of SVM models took about one or two days.

3.2. Comparing SVM models to standard BKT model

The final SVM prediction models were built by fitting the entire training set
with the best tuning parameters determined from the five-fold cross validation
procedure explained above (see Table 3). For each student in the test set, their
class membership, CORRECT (get the problem solving step correct at their first
attempt without using any hints available in the computer-based learning envi-
ronment) vs. WRONG (either get the problem solving step wrong or requested
a hint), and the posterior probability of being in the CORRECT class were com-
puted using Equation 2 and 3.

Figure 2 compares the ROC curves of four SVM models and the standard BKT
model built from a publicly available C++ code (https://github.com/IEDMS/
standard-bkt). Four SVM models yielded much larger AUC values, ranging
from 0.73 to 0.77, than the standard BKT model (AUC = 0.58), indicating that
these SVM models would make more accurate predictions than the standard BKT
model.

The confusion matrices of the standard BKT model and the RBF kernel SVM

152 Predictive SVM Model of Problem Solving Performance

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

BKT-STD (AUC = 0.58)
SVM-RBF (AUC = 0.77)
SVM-Linear (AUC = 0.75)
SVM-Polynomial (AUC = 0.73)
SVM-Sigmoid (AUC = 0.75)

Figure 2: Comparison of ROC curves and their AUC values of prediction models

model reveal that the RBF kernel SVM model performed better across the board
(see Figure 3). The RBF kernel SVM model showed higher recalls (0.78 vs. 0.72
for Wrong; 0.61 vs. 0.40 for Correct) and precisions (0.73 vs. 0.62 for Wrong;
0.66 vs. 0.50 for Correct) when students were predicted to be able to solve the
problem by themselves if the posterior probability, Pr(y = 1|~x), is greater than
0.5.

4. Discussion

The results of this study suggest that SVM may be able to make better predic-
tions on the problem solving performance of students, compared to the standard
BKT model, the most widely used computational method in educational data
mining research. The possible reason for this result is that SVM models used
more information about how students solved relevant problems in the past, com-
pared to the standard BKT model; SVM models have 13 predictors (number of

Young-Jin Lee 153

Wrong Correct
Predicted Class

C
or

re
ct

W
ro

ng
O

bs
er

ve
d

C
la

ss

506 332

841 327

BKT-STD

300

450

600

750

900

Wrong Correct
Predicted Class

C
or

re
ct

W
ro

ng
O

bs
er

ve
d

C
la

ss

331 507

908 260

SVM-RBF

300

450

600

750

900

Figure 3: Comparison of confusion matrices of prediction models (Cut-off prob-
ability = 0.5)

unique problems and steps students solved, fraction of correct steps/problems,
fraction of incorrect steps/problems, fraction of steps/problems with a hint re-
quest, streaks of correct answers, anonymized student ID, problem name, step
name, and KC) whereas the standard BKT model has only one predictor variable
(sequence of correct or wrong responses on each KC). This interpretation is in
line with Pardos and Heffernan (2011)’s study where they were able to achieve
performance gains by including the difficulty of problems in the standard BKT
model. It would be important to further investigate whether other predictors
or some combinations of predictors can be used to improve the performance of
SVM models because adding non-relevant predictors can hurt the performance
of a data mining algorithm.

Another reason for the poor performance of the standard BKT model is that
it does not take into account the ability of students. Obviously, academically
stronger students would show better problem solving performance than academ-
ically weaker students. However, the standard BKT model does not incorporate
the ability of students, resulting in a prediction model for average students. Re-
cently Yudelson, Koedinger and Gordon (2013) proposed an individualized BKT
model to allow the standard BKT model to include the ability of students. It
would be interesting to compare the individualized BKT model to SVM mod-
els when the individualized BKT model’s code becomes available for other re-
searchers to use in the future.

Finally, recent research has shown that ensemble methods can help build a
better predictive model of how students solve problems in the computer-based
learning environment (Pardos, Gowda, Baker and Heffernan, 2012). As a future
work, various ensemble models, such as Random Forest (Breiman, 2001), Ada
Boost (Freund and Schapire, 1999) and Gradient Boosting Machine (Friedman,

154 Predictive SVM Model of Problem Solving Performance

2001), will be developed to compare their predictive power to that of the SVM
models reported in this study.

References

Beck, J. E. and Chang, K. M. (2007). Identifiability: A fundamental problem of
student modeling. In Proceedings of the International Conference on User
Modeling, 137–146. Corfu, Greece.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.

Clark, R. C. and Mayer, E. (2003). E-learning and the science of instruc-
tion: Proven guidelines for consumers and designers of multimedia learn-
ing. Pfeiffer, San Francisco.

Corbett, A. and Anderson, J. (1995). Knowledge tracing: Modeling the acquisi-
tion of procedural knowledge. User Modeling and User-Adapted Interaction
4, 253–278.

Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector
machines and other kernel-based learning methods. Cambridge University
Press, New York.

DeCoste, D. and Schölkopf, B. (2002). Training invariant Support Vector Ma-
chines. Machine Learning 46, 161–190.

Ding, C. and Dubchak, I. (2001). Multi-class protein fold recognition using
Support Vector Machines and neural networks. Bioinformatics 16, 349–
358.

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters
27, 861–874.

Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting. Jour-
nal of Japanese Society for Artificial Intelligence 45, 771–780.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29, 1189–1232.

Furey, T. S., Duffy, N. Cristianini, N., Bednarski, D., Schummer, M. and Hassler,
D. (2000). Support Vector Machine Classification and Validation of Cancer
Tissue Samples Using Microarray Expression Data. Bioinformatics 16,
906–914.

Young-Jin Lee 155

Hua, S. and Sun, Z. (2001). Support Vector Machine approach for protein
subcellular localization prediction. Bioinformatics 17, 721–728.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. Kluwer Academic Publishers.

Kapur, M. (2008). Productive failure. Cognition and Instruction 26, 379–424.

Koedinger, K. R. and Aleven, V. (2007). Exploring the assistance dilemma
in experiments with cognitive tutors. Educational Psychology Review 19,
239–264.

Koedinger, K. R, Baker, R. S. J. d., Cunningham, K., Skogsholm, A., Leber,
B. and Stamper, J. (2010). A Data Repository for the EDM community:
The PSLC DataShop. In Handbook of Educational Data Mining (Edited
by C. Romero, S. Ventura, M. Pechenizkiy, and R. S. J. d. Baker), 43–55,
International Educational Data Mining Society.

Lawless, K. A. and Brown, S. W. (1997). Multimedia learning environments:
Issues of learner control and navigation. Instructional Science 25, 117–131.

Maghaddam, B. and Yang, M. H. (2002). Learning gender with support faces.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 707–
711.

Pardos, Z. A., Bergner, Y., Seaton, D. and Pritchard, D. E. (2013). Adapting
Bayesian Knowledge Tracing to a Massive Open Online Course in edX.
In Proceedings of the 6th International Conference on Educational Data
Mining, 137–144. Memphis, TN.

Pardos, Z. A., Gowda, S. M., Baker, R. S. J. d. and Heffernan, N. T. (2012).
The sum is greater than the parts: Ensembling models of student knowledge
in educational software. SIGKDD Explorations Newsletter 13, 37–44.

Pardos, Z. A. and Heffernan, N. T. (2011). KT-IDEM: Introducing Item Dif-
ficulty to the Knowledge Tracing Model. In Proceedings of the 19th In-
ternational Conference on User Modeling, Adaption, and Personalization,
243–254. Girona, Spain.

Pedregosa, F. Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830.

156 Predictive SVM Model of Problem Solving Performance

Platt, J. C. (2000). Probabilities in SV Machines. In Advances in Large Margin
Classifiers (Edited by Smola J. A.), MIT Press, 61–74.

Schmidt, R. A. and Bjork, R. A. (1992). New conceptualizations of practice:
Common principles in three paradigms suggest new concepts for training.
Psychological Science 3, 207–217.

Yudelson, M., Koedinger, K. R. and Gordon, G. J. (2013). Individualized
bayesian knowledge tracing models. In Proceedings of the 16th International
Conference on Artificial Intelligence in Education, 171–180. Memphis, TN.

Appendix. Python code for building an RBF kernel SVM model

import pandas as pd
import numpy as np

from s k l ea rn . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t
from s k l ea rn . p r e p r o c e s s i n g import StandardSca ler
from s k l ea rn . g r i d s e a r c h import GridSearchCV
from s k l ea rn . svm import SVC

Read the preproce s s ed data f i l e
data = pd . r ead c sv (’ . . / da taF i l e . txt ’ , sep =’\ t ’)
y = data [’CFA’]
X = data . drop (’CFA’ , a x i s =1)

Create dummy v a r i a b l e s f o r c a t e g o r i c a l p r e d i c t o r s
X student dummy = pd . core . reshape . get dummies (X[’ Student ’])
X problem dummy = pd . core . reshape . get dummies (X[’ Problem ’])
X step dummy = pd . core . reshape . get dummies (X[’ Step ’])
X kc dummy = pd . core . reshape . get dummies (X[’KC’])
X num = X. drop ([’ Student ’ , ’ Problem ’ , ’ Step ’ , ’KC’] , a x i s =1)

Create t r a i n i n g and t e s t s e t s
X = np . concatenate ((X num , X student dummy , X problem dummy ,

X step dummy , X kc dummy) , a x i s =1)
X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e =0.2 , random state =1128)

Normalize non−c a t e g o r i c a l p r e d i c t o r s

Young-Jin Lee 157

s c a l e r = StandardSca ler () . f i t (X train num)
X train num transformed = s c a l e r . t rans form (X train num)
X test num transformed = s c a l e r . t rans form (X test num)

X tra in t rans fo rmed = np . concatenate ((X train num transformed ,
X t r a i n c a t) , a x i s =1)

X tes t t rans fo rmed = np . concatenate ((X test num transformed ,
X t e s t c a t) , a x i s =1)

X tra in . shape , X tra in t rans fo rmed . shape , X tes t . shape ,
X te s t t rans fo rmed . shape

Find the best parameters f o r an SVM model us ing t r a i n i n g s e t
param grid = { ’C ’ : 10 .0 ∗∗ np . arange (−3 , 3) ,

’gamma ’ : 10 .0 ∗∗ np . arange (−3 , 3) ,
’ kerne l ’ : [’ rbf ’] }

c l f = GridSearchCV (SVC(p r o b a b i l i t y=True) , param grid , cv=5,
s c o r i n g =’ roc auc ’)

c l f . f i t (X tra in trans formed , y t r a i n)

Pred i c t c l a s s membership o f t e s t s e t
p r e d i c t e d c l a s s = c l f . p r e d i c t (X te s t t rans fo rmed)

Pred i c t p o s t e r i o r p r o b a b i l i t y o f t e s t s e t
p red i c t ed prob = c l f . p r ed i c t p roba (X tes t t rans fo rmed)

Received XXXX XX, 2015; accepted XXXX XX, 2016.

Young-Jin Lee
University of Kansas
1122 W. Campus Road
Lawrence, KS 66049, USA
yjlee@ku.edu

